Ch 7: Checking observability of state-space models with TVPs

Sy-Miin Chow

June 4, 2021

```
#Set up display options to suppress scientific notations
rm(list=ls())
options(scipen=999)
```


Background

The goal of this script is to provide several examples of checking the observability of state-space models with time-varying parameters (TVPs). More details can be found in Chapter 7 of Gates, K., Chow, S-M., \& Molenaar, P.C.M. Analysis of Intraindividual Variation. Systems Approaches to Human Process Analysis. New York, NY: Taylor \& Francis.

Define a function to check observability

```
#Function to get observability matrix - see Equation 7.10 in Chapter 7
#Note that Wikipedia defines O as the transpose of Eq 7.10:
getObservabilityMatrix = function(Jacob_h,Jacob_g){
ne = dim(Jacob_g)[1]
ny = dim(Jacob_h)[1]
J = t(Jacob_h)
O_recursive = matrix(NA,ne,ny*ne)
for (i in 0:(ne-1)){
    O_recursive[,(1+i*(ny)):((i+1)*(ny))] = J
    J = t(Jacob_g)%*%J
}
return(0_recursive)
}
```


TVP Example 1

This is an example motivated by Molenaar, de Gooijer, \& Schmitz, 1992. In this examples, we have 3 manifest variables, one common factor, and time-varying factor loadings:

$$
\begin{gathered}
y(t)=\Lambda(t) \eta(t)+\epsilon(t) ; y(t)=\left[y_{1}(t), y_{2}(t), y_{3}(t)\right]^{\prime} \\
\Lambda(t)=\left[l_{11}(t), l_{21}(t), l_{31}(t)\right]^{\prime}
\end{gathered}
$$

The TV factor loadings follow the random walk model as:

$$
\Lambda(t)=\Lambda(t-1)+\zeta_{\Lambda}(t)
$$

The expanded form of this model is obtained by inserting $\Lambda(t)$ into:

$$
\eta^{*}(t)=\left[\eta(t), l_{11}(t), l_{21}(t), l_{31}(t)\right]^{\prime}
$$

Let:
$y_{1}(t)=l_{11}(t) * \eta(t)$ be defined as h_{1},
$y_{2}(t)=l_{21}(t) * \eta(t)$ be defined as h_{2},
$y_{3}(t)=l_{31}(t) * \eta(t)$ be defined as h_{3}.
At the dynamic level, let $g=\left[g_{1}, g_{2}, g_{3}, g_{4}\right]^{\prime}$ be a vector of nonlinear dynamic functions, with:
$\eta(t)=\alpha_{1} * \eta(t-1)+\zeta_{\eta}(t)$ be defined as g_{1},
$l_{11}(t)=l_{11}(t-1)+\zeta_{l_{11}}(t)$ be defined as g_{2},
$l_{21}(t)=l_{21}(t-1)+\zeta_{l_{21}}(t)$ be defined as g_{3}, and
$l_{31}(t)=l_{31}(t-1)+\zeta_{l_{31}}(t)$ be defined as g_{4}.
$J a c o b_{g}=\frac{\partial g}{\partial \eta^{*}}$ is the Jacobian matrix where the (j, k) th element of $J a c o b_{g}$ carries partial derivative of the j th dynamic function with respect to the k th latent variable $J a c o b_{h}=\frac{\partial h}{\partial \eta^{*}}$ is the Jacobian matrix where the (j, k) th element of $J a c o b_{h}$ carries partial derivative of the j th measurement function with respect to the k th latent variable.

To check the observability of this model, we substitute arbitrary numerical values into all the unknown elements, and then check the rank of the resulting observability matrix.

```
alpha_1 = .8; eta_t = 2; l_11_t = 1; l_21_t = .9; l_31_t = 1.2
ne = 4 #length of eta*(t)
Jacob_g = matrix(c(alpha_1, 0, 0, 0,
    0,1,0,0,
    0,0,1,0,
    0,0,0,1),ncol=ne, byrow=TRUE)
Jacob_h = matrix(c(l_11_t,eta_t, 0, 0,
    l_21_t,0,eta_t,0,
    l_31_t,0,0,eta_t),ncol=ne, byrow=TRUE)
# Call the getObservabilityMatrix function to automatically construct the observability matrix;
# here is one way to check the rank of the matrix.
qr(getObservabilityMatrix(Jacob_h,Jacob_g))$rank
## [1] 4
```

The rank of the returned observability matrix is equal to $n e$, which suggests that the observability matrix is of full rank. This common factor model with TV factor loadings is observable!

TVP Example 2 - Expanding Example 1 to a two-factor model

In this example, we expanded Example 1 to 6 manifest variables and two latent factors with time-varying factor loadings:

$$
\begin{gather*}
y(t)=\Lambda(t) \eta(t)+\epsilon(t) ; y(t)=\left[y_{1}(t), y_{2}(t), y_{3}(t), \ldots, y_{6}(t)\right]^{\prime} \\
\Lambda(t)=\left[\begin{array}{cc}
l_{11}(t) & 0 \\
l_{21}(t) & 0 \\
l_{31}(t) & 0 \\
0 & l_{42}(t) \\
0 & l_{52}(t) \\
0 & l_{62}(t)
\end{array}\right] \tag{1}
\end{gather*}
$$

The expanded form of this model is obtained by inserting $\Lambda(t)$ into:

$$
\eta^{*}(t)=\left[\eta_{1}(t), \eta_{2}(t), l_{11}(t), l_{21}(t), l_{31}(t), \ldots, l_{62}(t)\right]^{\prime}
$$

and letting the TV factor loadings follow the random walk model as:

$$
\begin{aligned}
& y_{1}(t)=l_{11}(t) * \eta_{1}(t) \text { be defined as } h_{1} \\
& y_{2}(t)=l_{21}(t) * \eta_{1}(t) \text { be defined as } h_{2} \\
& y_{3}(t)=l_{31}(t) * \eta_{1}(t) \text { be defined as } h_{3} \\
& y_{4}(t)=l_{42}(t) * \eta_{2}(t) \text { be defined as } h_{4} \\
& y_{5}(t)=l_{52}(t) * \eta_{2}(t) \text { be defined as } h_{5} \\
& y_{6}(t)=l_{62}(t) * \eta_{2}(t) \text { be defined as } h_{6}
\end{aligned}
$$

At the dynamic level, let $g=\left[g_{1}, g_{2}, g_{3}, g_{4}, g_{5}, g_{6}, g_{7}, g_{8}\right]^{\prime}$ be a vector of nonlinear dynamic functions, with:

$$
\begin{gathered}
\eta_{1}(t)=\alpha_{11} * \eta_{1}(t-1)+\alpha_{12} * \eta_{2}(t-1)+\zeta_{\eta_{1}}(t), \text { defined as } g_{1} \\
\eta_{2}(t)=\alpha_{22} * \eta_{2}(t-1)+\alpha_{21} * \eta_{1}(t-1)+\zeta_{\eta_{2}}(t), \text { defined as } g_{2} \\
l_{11}(t)=l_{11}(t-1)+\zeta_{l_{11}}(t) \text { defined as } g_{3} \\
l_{21}(t)=l_{21}(t-1)+\zeta_{l_{21}}(t) \text { defined as } g_{4} \\
l_{31}(t)=l_{31}(t-1)+\zeta_{l_{31}}(t) \text { defined as } g_{5} \\
\vdots \\
l_{62}(t)=l_{62}(t-1)+\zeta_{l_{62}}(t) \text { be defined as } g_{8}
\end{gathered}
$$

$J a \operatorname{cob}_{g}=\frac{\partial g}{\partial \eta^{*}}$ is the Jacobian matrix where the (j, k) th element of $J a c o b_{g}$ carries partial derivative of the j th dynamic function with respect to the k th latent variable $J a c o b_{h}=\frac{\partial h}{\partial \eta^{*}}$ is the Jacobian matrix where the (j, k) th element of $J a c o b_{h}$ carries partial derivative of the j th measurement function with respect to the k th latent variable.

To check the observability of this model, we substitute arbitrary numerical values into all the unknown elements, and then check the rank of the resulting observability matrix.

```
alpha_11 = . 8; alpha_12 = . 1; alpha_21 = -.3; alpha_22 = .7
eta1_t = 2; eta2_t = -3
l_11_t = 1; l_21_t = .9; l_31_t = 1.2
l_42_t = 1; l_52_t = .8; l_62_t = 0.7
ne = 8 # length of expanded eta* (t)
Jacob_g = matrix(c(alpha_11, alpha_12, rep (0,6),
    alpha_21, alpha_22, rep(0,6),
    0,0,1,0,0,0,0,0,
    0,0,0,1,0,0,0,0,
    0,0,0,0,1,0,0,0,
    0,0,0,0,0,1,0,0,
    0,0,0,0,0,0,1,0,
    0,0,0,0,0,0,0,1),ncol=ne, byrow=TRUE)
Jacob_h = matrix(c(l_11_t,0,eta1_t,0,0,0,0,0,
    l_21_t,0,0,eta1_t,0,0,0,0,
    l_31_t,0,0,0,eta1_t,0,0,0,
    0,1_42_t,0,0,0,eta2_t,0,0,
    0,1_52_t,0,0,0,0,eta2_t,0,
    0,1_62_t,0,0,0,0,0,eta2_t
    ),ncol=ne,byrow=TRUE)
qr(getObservabilityMatrix(Jacob_h, Jacob_g))$rank
## [1] 8
```

The rank of the returned observability matrix is equal to $n e$. So this model is observable too.

TVP Example 3 - Two-factor model, TV auto- and cross-regression weights

In this example, we have a two-factor model with time-invariant factor loadings, but TV auto- and crossregression weights at the factor level as:

$$
\begin{gather*}
y(t)=\Lambda \eta(t)+\epsilon(t) ; y(t)=\left[y_{1}(t), y_{2}(t), y_{3}(t), \ldots, y_{6}(t)\right]^{\prime} \\
\Lambda(t)=\left[\begin{array}{cc}
l_{11} & 0 \\
l_{21} & 0 \\
l_{31} & 0 \\
0 & l_{42} \\
0 & l_{52} \\
0 & l_{62}
\end{array}\right] \tag{2}
\end{gather*}
$$

At the dynamic level, let $g=\left[g_{1}, g_{2}, g_{3}, g_{4}, g_{5}, g_{6}\right]^{\prime}$ be a vector of nonlinear dynamic functions, with:
$\eta_{1}(t)=\alpha_{11}(t-1) \eta_{1}(t-1)+\alpha_{12}(t-1) \eta_{2}(t-1)+\zeta_{\eta_{1}}(t)$, defined as g_{1}
$\eta_{2}(t)=\alpha_{22}(t-1) \eta_{2}(t-1)+\alpha_{21}(t-1) \eta_{1}(t-1)+\zeta_{\eta_{2}}(t)$, defined as g_{2}
$\alpha_{11}(t)=\alpha_{11}(t-1)+\zeta_{\alpha_{11}}(t)$, defined as g_{3},
$\alpha_{12}(t)=\alpha_{12}(t-1)+\zeta_{\alpha_{12}}(t)$, defined as g_{4},
$\alpha_{21}(t)=\alpha_{21}(t-1)+\zeta_{\alpha_{21}}(t)$, defined as g_{5},
$\alpha_{22}(t)=\alpha_{22}(t-1)+\zeta_{\alpha_{22}}(t)$, defined as g_{6},

As before, $J a c o b_{g}=\frac{\partial g}{\partial \eta^{*}}$ is the Jacobian matrix where the (j, k) th element of $J a c o b_{g}$ carries partial derivative of the j th dynamic function with respect to the k th latent variable; $J a c o b_{h}=\frac{\partial h}{\partial \eta^{*}}$ is the Jacobian matrix where the (j, k) th element of $J a c o b_{h}$ carries partial derivative of the j th measurement function with respect to the k th latent variable.

To check the observability of this model, we substitute arbitrary numerical values into all the unknown elements, and then check the rank of the resulting observability matrix.

```
a_11_t = .8; a_12_t = .1; a_21_t = -.3; a_22_t = .7
eta1_t = 2; eta2_t = -3
l_11 = 1; l_21 = .9; l_31 = 1.2
l_42 = 1; l_52 = .8; l_62 = 0.7
ne = 6 # length of expanded eta*(t)
Jacob_g = matrix(c(a_11_t, a_12_t, rep (0,4),
    a_21_t, a_22_t, rep (0,4),
    0,0,1,0,0,0,
    0,0,0,1,0,0,
    0,0,0,0,1,0,
    0,0,0,0,0,1),ncol=ne,byrow=TRUE)
Jacob_h = matrix(c(l_11,0,rep(0,4),
    l_21,0,rep (0,4),
    l_31,0,rep(0,4),
    0,1_42,rep(0,4),
    0,1_52,rep(0,4),
    0,1_62,rep (0,4)
    ),ncol=ne,byrow=TRUE)
qr(getObservabilityMatrix(Jacob_h,Jacob_g))$rank
## [1] 2
```

This model is not observable.

TVP Example 4 - Two-factor model, TV cross-regression weights

Seeing that the model in Example 3 is not observable, we modify it so only the two cross-regression parameters were allowed to be TVPs:

$$
\begin{gathered}
\eta_{1}(t)=\alpha_{11} \eta_{1}(t-1)+\alpha_{12}(t-1) \eta_{2}(t-1)+\zeta_{\eta_{1}}(t), \text { defined as } g_{1} \\
\eta_{2}(t)=\alpha_{22} \eta_{2}(t-1)+\alpha_{21}(t-1) \eta_{1}(t-1)+\zeta_{\eta_{2}}(t), \text { defined as } g_{2} \\
\alpha_{12}(t)=\alpha_{12}(t-1)+\zeta_{\alpha_{12}}(t), \text { defined as } g_{3} \\
\alpha_{21}(t)=\alpha_{21}(t-1)+\zeta_{\alpha_{21}}(t), \text { defined as } g_{4}
\end{gathered}
$$

Now let's repeat the same process.

```
a_11 = .8; a_12_t = .1; a_21_t = -.3; a_22 = .7
eta1_t = 2; eta2_t = -3
l_11 = 1; l_21 = .9; l_31 = 1.2
l_42 = 1; l_52 = .8; l_62 = 0.7
ne = 4 # length of expanded eta*(t)
Jacob_g = matrix(c(a_11, a_12_t, eta1_t, 0,
    a_21_t, a_22, 0, eta2_t,
    0,0,1,0,
    0,0,0,1),ncol=ne, byrow=TRUE)
Jacob_h = matrix(c(l_11,0,rep (0,2),
    l_21,0,rep (0,2),
    l_31,0,rep(0,2),
    0,1_42,rep(0,2),
    0,1_52,rep (0,2),
    0,1_62,rep(0,2)
),ncol=ne,byrow=TRUE)
qr(getObservabilityMatrix(Jacob_h,Jacob_g))$rank
## [1] 4
```

This streamlined model is now observable.

