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Set	up	the	environment:	

library(pracma)	

library(signal)	

library(fUnitRoots)	

library(tseries)	
library(portes)	

Look	at	trends	and	order	
First	let's	generate	some	data	with	an	AR(1)	coefficient	of	0.20	and	no	trend:	

𝑦(𝑡) = 0.20 ∗ 𝑦(𝑡 − 1) + 𝜁(𝑡)	

#initiate	
seed <- 123456	
noise <- rnorm(200, 0, 5)	
	
# AR series	
yAR <-  rnorm(1, 0, 1)	
for (p in 2:200)	
yAR[p]     <- 0.20*yAR[p-1] + noise[p]	
plot(ts(yAR))	



		

Test	order	and	coefficients.	

par(mfrow = c(1,2))	
plot(acf(yAR, plot = F), main = "ACF for yAR")	
plot(pacf(yAR, plot = F), main = "PACF for yAR")	



	
fitAR <- ar(yAR)	
	
# examine order 	
fitAR$order	

## [1] 1	

# examine coefficient estimates	
fitAR$ar	

## [1] 0.2730648	

The	lag	order	and	estimates	look	good.	

Let's	examine	a	linear	trend	without	any	autoregressive	relations	and	see	what	happens.	

𝑦(𝑡) = 0.20 ∗ 𝑡𝑖𝑚𝑒(𝑡) + 𝜁(𝑡)	

# trend series	
time  <- 1:200	
ytrend <-  rnorm(1, 0, 1)	
for (p in 2:200)	
ytrend[p]     <-  0.2*time[p] + noise[p]	
plot(ts(ytrend))	



	
par(mfrow = c(1,2))	
plot(acf(ytrend, plot = F), main = "ACF for ytrend")	
plot(pacf(ytrend, plot = F), main = "PACF for ytrend")	



	
fitTrend <- ar(ytrend)	
	
# examine order 	
fitTrend$order	

## [1] 4	

# examine coefficient estimates	
fitTrend$ar	

## [1] 0.4097025 0.1751033 0.2211417 0.1304655	

We	see	that	a	linear	trend	may	show	up	as	AR	effects.	

Now	let's	put	them	together	-	a	linear	trend	and	an	AR(1)	relation.	

𝑦(𝑡) = 0.20 ∗ 𝑦(𝑡 − 1) + 0.20 ∗ 𝑡𝑖𝑚𝑒(𝑡) + 𝜁(𝑡)	

# AR series + trend	
yARtrend <-  rnorm(1, 0, 1)	
for (p in 2:200)	
yARtrend[p]     <- 0.20*yARtrend[p-1] +  0.2*time[p]+ noise[p]	
plot(ts(yARtrend))	



	
par(mfrow = c(1,2))	
plot(acf(yARtrend, plot = F), main = "ACF for yARtrend")	
plot(pacf(yARtrend, plot = F), main = "PACF for yARtrend")	



	
fitARtrend <- ar(yARtrend)	
	
# examine order 	
fitARtrend$order	

## [1] 3	

# examine coefficient estimates	
fitARtrend$ar	

## [1] 0.62051167 0.09927645 0.22509653	

Again,	we	see	inflated	AR	coefficients.	

Fortunately,	we	can	remove	trends	pretty	easily.	We	can	either	include	it	during	the	model	
(much	like	in	our	data-generating	equations	above)	or	we	can	detrend	prior	to	analysis.	
Let's	detrend.	

## estimating trends ##	
	
fitc<- lm(yARtrend ~ time)  #run a simple regression predicting time	
summary(fitc)	



## 	
## Call:	
## lm(formula = yARtrend ~ time)	
## 	
## Residuals:	
##      Min       1Q   Median       3Q      Max 	
## -16.7784  -3.3305   0.0633   3.5687  16.1571 	
## 	
## Coefficients:	
##             Estimate Std. Error t value Pr(>|t|)    	
## (Intercept) 1.158418   0.712559   1.626    0.106    	
## time        0.242667   0.006148  39.472   <2e-16 ***	
## ---	
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	
## 	
## Residual standard error: 5.02 on 198 degrees of freedom	
## Multiple R-squared:  0.8872, Adjusted R-squared:  0.8867 	
## F-statistic:  1558 on 1 and 198 DF,  p-value: < 2.2e-16	

We	can	see	here	that	trends	exist	for	𝑦𝐴𝑅𝑡𝑟𝑒𝑛𝑑.	You	can	check	on	your	own	to	ensure	that	
the	coefficient	for	the	trend	variable	𝑡𝑖𝑚𝑒	was	not	signfiicant	for	the	𝑦𝐴𝑅	data.	

Now	that	we	have	identified	the	presence	of	a	linear	trend	we	can	remove	it.	

##### detrend the yARtrend data - the easy way ####	
ydetrend1 <- detrend(yARtrend, tt = 'linear') 	
	
# If we do the below we can see exactly what is being done. 	
# Remember that fitc was the regression of the yARtrend variable on the time 
vector. 	
ypredict <- fitc$coefficients[1] + fitc$coefficients[2]*time # predict Y usin
g coefficients 	
ydetrend2 <- yARtrend - ypredict # subtract the predicted values from observe
d to obtain the residuals. This is the detrended data.	
	
# This is what is done in the detrend function, and is perfectly correlated w
ith ydetrend1	
	
# now look at results: 	
par(mfrow = c(1,2))	
plot(acf(ydetrend2, plot = F), main = "ACF for ydetrend2")	
plot(pacf(ydetrend2, plot = F), main = "PACF for ydetrend2")	



	
ar(ydetrend2) # AR(1) selected	

## 	
## Call:	
## ar(x = ydetrend2)	
## 	
## Coefficients:	
##      1  	
## 0.2688  	
## 	
## Order selected 1  sigma^2 estimated as  23.38	

Now	we	obtain	the	AR(1)	coefficient	used	to	generate	the	data.	

	 	



Testing	for	stability	and	stationarity.	
It	is	common	to	also	test	for	stability	and	stationarity.	The	former	helps	to	identify	if	the	
data	will	"blow	up"	if	taken	to	T	=	infinity.	

adf.test(yARtrend,  alternative = "stationary") 	

## Warning in adf.test(yARtrend, alternative = "stationary"): p-value smaller	
## than printed p-value	

## 	
##  Augmented Dickey-Fuller Test	
## 	
## data:  yARtrend	
## Dickey-Fuller = -6.1662, Lag order = 5, p-value = 0.01	
## alternative hypothesis: stationary	

The	ADF	test	found	that	the	null	hypothesis	that	the	data	are	not	stable	is	rejected.	The	
alternative	hypothesis,	that	the	data	are	stationary,	was	supported.	This	highlights	the	need	
to	explore	linear	trends	in	the	data	where	extreme	values	are	unlikely.	

Testing	residuals.	
Now	let's	simulate	a	new	series	with	greater	lags	-	an	AR(3)	process.	We'll	fit	an	

# AR(3) series	
yAR3 <-  rnorm(1, 0, 1)	
yAR3[2] <- 0.3*yAR3[1]+noise[2]	
yAR3[3] <- 0.3*yAR3[1] + 0.3*yAR3[2] +noise[2]	
for (p in 4:200)	
yAR3[p]     <- 0.30*yAR3[p-1] + 0.30*yAR3[p-2] - 0.40*yAR3[p-3] + noise[p]	
plot(ts(yAR3))	

	



acf(yAR3)	

	
pacf(yAR3)	

	
fitAR3 <- ar(yAR3)	
	
Box.test(fitAR3$resid, lag = 5, type = c("Box-Pierce"), fitdf = 2)	

## 	
##  Box-Pierce test	



## 	
## data:  fitAR3$resid	
## X-squared = 0.32229, df = 3, p-value = 0.9558	

When	the	correct	lag	order	is	used	in	the	model	the	residuals	pass	the	Box-Pierce	test.	They	
are	not	correlated	across	time.	

Let's	see	what	happens	when	we	only	estimate	an	AR(2).	

fitAR2 <- ar(yAR3, order.max = 2)	
Box.test(fitAR2$resid, lag = 5, type = c("Box-Pierce"), fitdf = 2)	

## 	
##  Box-Pierce test	
## 	
## data:  fitAR2$resid	
## X-squared = 53.725, df = 3, p-value = 1.284e-11	

Box.test(fitAR2$resid, lag=20,type = "Ljung-Box") # portmanteu test	

## 	
##  Box-Ljung test	
## 	
## data:  fitAR2$resid	
## X-squared = 79.037, df = 20, p-value = 5.717e-09	

We	see	that	the	tests	were	significant	-	the	errors	are	correlated.	


